Part I: (60 Points /10 Points each) Problems 1-7: Evaluate the definite integrals and find the indefinite integrals. Please complete 6 out of the 7 problems. Be sure to write down your evil plans) or strategies; especially if youget stuck on a problem. Provide exact answers only. Cross out the problem that you do not want graded.

$$
\text { 1. } \begin{aligned}
\int \arcsin 2 x d x & =(\arcsin 2 x)(x)-\int(x)\left(\frac{2 d x}{\sqrt{1-4 x^{2}}}\right) \\
& =x \arcsin 2 x-2\left(-\frac{1}{8}\right) x\left(1-4 x^{2}\right)^{-1 / 2} d x(-8) \\
& =x \arcsin 2 x+\frac{1}{4} \frac{\left(1-4 x^{2}\right)^{1 / 2}}{1 / 2}+C \\
& =x \arcsin 2 x+\frac{1}{2} \sqrt{1-4 x^{2}}+C
\end{aligned}
$$

$$
\text { 18/ } \begin{aligned}
u & =\arcsin 2 x \\
\frac{d u}{d x} & =\frac{2}{\sqrt{1-4 x^{2}}} \\
d u & =\frac{2 d x}{\sqrt{1-4 x^{2}}} \\
\int d v & =\int d x \\
v & =x
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=1-4 x^{2} \\
& g^{\prime}(x)=-8 x \\
& \int f(g(x)) g^{\prime}(x) d x
\end{aligned}
$$

$$
=F(g(x))+C
$$

2. $\int\left(\frac{\ln x}{\sqrt{x}}\right)^{2} d x=\int \frac{(\ln x)^{2}}{x} d x$

$$
=\int \frac{(u)^{2}}{\psi} \cdot(火 d u)
$$

$$
\begin{aligned}
& \frac{u-\operatorname{sub}}{u=\ln x} \\
& \frac{d u}{d x}=\frac{1}{x} \\
& d x=x d u
\end{aligned}
$$

$$
\begin{aligned}
& =\int u^{2} d u \\
& =\frac{1}{3} u^{3}+C \\
& =\frac{1}{3}(\ln x)^{3}+C
\end{aligned}
$$

$$
\text { 3. } \begin{aligned}
&\left.\left.\int_{0}^{2}(x-1) \sqrt{2 x+1} d x=\int_{1}^{5}\left[\frac{1}{2}(u-1)\right)-1\right]\left(u^{1 / 2}\right) \frac{d u}{2}\right) \\
&=\frac{1}{2} \int_{1}^{5}\left(\frac{1}{2} u-\frac{3}{2}\right) u^{1 / 2} d u \\
&=\frac{1}{4} \int_{1}^{5}(u-3) u^{1 / 2} d u \\
&=\frac{1}{4} \int_{1}^{5}\left(u^{3 / 2}-3 u^{1 / 2}\right) d u \\
&=\frac{1}{4}\left[\frac{2}{5} u^{5 / 2}-2 u^{3 / 2}\right]_{u=1}^{u=5} \\
&\left.=\frac{1}{4}\left(\left(\frac{2}{5}(\sqrt{5})^{5}\right)-2\left((\sqrt{5})^{3}\right)\right)-\left(\frac{2}{5} \cdot 1-2 \cdot 1\right)\right] \\
&\left.=\frac{1}{4}\left(\frac{2}{5}\right)^{5} 5 \sqrt{5}-2 \cdot 5 \sqrt{5}-\frac{2}{5}+2\right) \\
&=\frac{1}{4}\left(10 \sqrt{5}-10-\sqrt{5}+\frac{8}{5}\right) \\
&=\frac{1}{4} \cdot \frac{8}{5} \\
&=\frac{2}{5}
\end{aligned}
$$

IBP or u-Sub
$u-s u b:$

$$
\begin{aligned}
& u=2 x+1 \rightarrow x=\frac{1}{2}(u-1) \\
& \frac{d u}{d x}=2 \\
& d x=\frac{d u}{2}
\end{aligned}
$$

upper limit:

$$
u(2)=2(2)+1=5
$$

lower limit :

$$
\begin{aligned}
& u(0)=2(0)+1)=1 \\
& I B P: \begin{aligned}
u & =x-1 \quad \int d v=\left((2 x+1)^{1 / 2} / 2\right. \\
\frac{d u}{d x} & =1
\end{aligned} \quad v=\frac{1}{2} \frac{(2 x+1)^{3 / 2}}{3 / 2} \\
& d u=d x \quad \\
& v=\frac{1}{3}(2 x+1)^{3 / 2}
\end{aligned}
$$

$1 b^{9}$

$$
\begin{aligned}
& \int(x-1)(2 x+1)^{1 / 2} d x=(x-1)\left[\frac{1}{3}(2 x+1)^{3 / 2}\right]-\int\left[\frac{1}{3}(2 x+1)^{3 / 2}\right](d x) \\
&=\frac{1}{3}(x-1)(2 x+1)^{3 / 2}-\frac{1}{3} \cdot \frac{1}{2} \int(2 x+1)^{3 / 2} d x \cdot 2 \\
&=\frac{1}{3}(x-1)(2 x+1)^{3 / 2}-\frac{1}{6}\left(\frac{(2 x+1)^{5 / 2}}{5 / 2}\right)+C \\
&=\frac{1}{3}(x-1)(2 x+1)^{3 / 2}-\frac{1}{15}(2 x+1)^{5 / 2}+C \\
& S^{5 / 2}(x)=2 x+1 \\
& g^{\prime}(x)=2 \\
& \int_{0}^{2}(x-1)(2 x+1)^{1 / 2} d x=\left[\left(\frac{1}{3}(2-1)(2 \cdot-1)^{3 / 2}-\frac{1}{15}(2 \cdot 2+1)^{5 / 2}\right]-\left[\frac{1}{3}(0-1)(2 \cdot 0+1)^{3 / 2}-\frac{1}{15}(2 \cdot 0+1)^{5 / 2}\right]\right. \\
&=F(g(x))+C \\
&=\left[\frac{1}{3}(\sqrt{5})^{3}-\frac{1}{15}(\sqrt{5})^{5}-\left(-\frac{1}{3}\right)(1)^{3 / 2}+\frac{1}{15}(1)^{5 / 2}\right] \\
&=\frac{1}{3} \cdot 5 \sqrt{5}-\frac{1}{155} \cdot 25 \sqrt{5}+\frac{1}{3}+\frac{1}{15}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5}{3} \sqrt{5}-\frac{5}{3} \sqrt{5}+\frac{6}{15} \\
& =\frac{2}{5}
\end{aligned}
$$

4.

$$
\begin{aligned}
\int \tan ^{4} \theta \sec ^{4} \theta d \theta & =\int(\tan \theta)^{4}\left(\sec ^{2} \theta\right)\left(\sec ^{2} \theta\right) d \theta \\
& =\int(\tan \theta)^{4}\left[(\tan \theta)^{2}+1\right] \sec ^{2} \theta d \theta \\
& \left.=\int(\tan \theta)^{6}+(\tan \theta)^{4}\right] \sec ^{2} \theta d \theta \\
& =\frac{\tan ^{7} \theta}{7}+\frac{\tan ^{5} \theta}{5}+C
\end{aligned}
$$

$$
\text { 5. } \begin{aligned}
\int \sin 5 x \cos x d x & =\frac{1}{2} \int(\sin (5-1) x+\sin (5+1) x) d x \\
& =\frac{1}{2} \int(\sin 4 x+\sin 6 x) d x \\
& =\frac{1}{2}\left[\left(-\frac{\cos 4 x}{4}\right)+\left(-\frac{\cos 6 x}{6}\right)\right]+C \\
& =-\frac{1}{8} \cos 4 x-\frac{1}{12} \cos 6 x+C \\
& =-\frac{1}{24}(3 \cos 4 x-2 \cos 6 x)+C
\end{aligned}
$$

6. $\int_{0}^{1} \frac{1}{x^{2}+1} d x=\frac{1}{1} \arctan \frac{x}{1} \int_{x=0}^{x=1}$

$$
a^{2}=1 \rightarrow a=1
$$

$$
\begin{aligned}
& =\arctan 1-\arctan 0 \\
& =\frac{\pi}{4}-0 \\
& =\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. } \int_{0}^{1}\left[\frac{x^{2}-x}{x^{2}+x+1}\right] d x \\
& =\int_{0}^{1}(\underbrace{1-\frac{2 x+1}{x^{2}+x+1}}) d x \\
& =\left[x-\ln \left|x^{2}+x+1\right|\right]_{x=0}^{x=1} \\
& g(x)=x^{2}+x+1 \\
& g^{\prime}(x)=2 x+1 \\
& =\left[\left(1-\ln \left|1^{2}+1+1\right|\right)-\left(0-\ln \left|0^{2}+0+1\right|\right)\right] \\
& =1-\ln 3+\ln 1 \\
& =1-\ln 3+0 \\
& =1-\ln 3
\end{aligned}
$$

Part II: (14 Points) Problems 8-9: Find the indefinite integrals. Please complete 1 out of the 2 problems. Be sure to write down your evil plan (s) or strategies; especially if youget stuck on a problem. Provide exact answers only. Cross out the problem that you do not want graded.

$$
2 \int e^{-x} \sin x d x=-e^{-x}(\sin x+\cos x)+C
$$

IBP 1:

$$
\begin{aligned}
& u=\sin x \quad \int d v=\int e^{-x} d x \\
& \frac{d u}{d x}=\cos x \quad v=-e^{-x} \\
& d u=\cos x d x
\end{aligned}
$$

IBP 2:

$$
\begin{aligned}
& u=\cos x \quad \int d v=\int e^{-x} d x \\
& \frac{d u}{d x}=-\sin x \quad v=-e^{-x} \\
& d u=-\sin x d x
\end{aligned}
$$

$$
\begin{aligned}
\text { 9. } \quad \int \sec ^{3} x d x & =\int \sec x \sec ^{2} x d x \\
\int \sec ^{3} x d x & \left.=(\sec x)(\tan x)-\int \tan x\right)(\sec x \tan x d x)
\end{aligned} \begin{aligned}
& \frac{1}{d u}=\sec x \\
& \frac{d u}{d x} \\
& d u=\sec x t a \\
& d \sec ^{3} x d x
\end{aligned}=\sec x \tan x-\int \tan ^{2} x \sec x d x \quad \begin{aligned}
& \int \sec ^{3} x d x=\sec x \tan x-\int\left(\sec ^{2} x-1\right) \sec x d x \\
& \int \sec ^{3} x d x=\sec x \tan x-\int\left(\sec ^{3} x-\sec x\right) d x \\
& \int \sec ^{3} x d x=\sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x \\
& +\int \sec ^{3} x d x \\
& \begin{array}{l}
2 \int \sec ^{3} x d x
\end{array} \\
& 2 \sec ^{3} x d x=\sec x \tan x+\int \sec x d x=\sec x \tan x+\ln |\sec x+\tan x|+C \\
& \int \sec ^{3} x d x=\frac{1}{2}(\sec x \tan x+\ln |\sec x+\tan x|)+C
\end{aligned}
$$

10. $\lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{\text { D.S. }}{=} \frac{\infty}{\infty}$ indeterminate \rightarrow in correct form to use L'Hopital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1} \\
& =\frac{0}{1} \\
& =0
\end{aligned}
$$

11. $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}} \stackrel{D . S}{=} 0^{0}$ indeterminate not in right format for L'Hopital's Rule

$$
x^{\sqrt{x}}=e^{\ln x^{\sqrt{x}}}
$$

$$
=e^{\sqrt{x} \ln x^{2}} \text { now } \lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x=0 \cdot(-\infty)
$$

indeterminate but not in
$\begin{aligned} &=e^{\frac{\ln x}{\frac{1}{\sqrt{x}}}} \sim \text { now } \lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{\sqrt{x}}}=\frac{-\infty}{\infty} \\ & \text { now in } \\ & \text { correct }\end{aligned}$ right format correct

$$
\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}=\lim _{x \rightarrow 0^{+}} e^{\ln x /(1 / \sqrt{x})}
$$ form for L'Hôpital's rule

$$
\begin{aligned}
& =e^{\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{\sqrt{x}}}} \\
& =e^{\lim _{x \rightarrow 0^{+}} \frac{d / d x \ln x}{d / 2 x \sqrt{x}}} \\
& \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{2 x^{-3 / 2}}} \\
& =e^{-\frac{2 x^{-3 / 2}}{x}} \\
& =e^{-2 x^{-1 / 2}} \\
& =e^{-\frac{2}{\sqrt{x}}} \\
& =e^{-0} \\
& =e^{-0} \\
& =1
\end{aligned}
$$

Part $\mathcal{V}:(10$ Points). Problem 12. Solve the following application. Exact answers only, please.

Sind the area of the region bounded by $f(x)=\cos ^{4} x, y=0, x=\frac{\pi}{4}$, and. $x=\frac{\pi}{3}$.

$$
\begin{aligned}
& A=\int_{\pi / 4}^{\pi / 3}(\cos x)^{4} d x \\
& A=\int_{\pi / 4}^{\pi / 3}\left[(\cos x)^{2}\right]^{2} d x \\
& A=\int_{\pi / 4}^{\pi / 3}\left(\frac{1+\cos 2 x}{2}\right)^{2} d x \\
& A=\frac{1}{4} \int_{\pi / 4}^{\pi / 3}\left(1+2 \cos 2 x+(\cos 2 x)^{2}\right) d x \\
& A=\frac{1}{4}\left[\int_{\pi / 3}^{\pi / 3}(1+2 \cos 2 x d x)+\frac{1}{2} \int_{\pi / 4}^{\pi / 3}(1+\cos 4 x) d x\right] \\
& A=\frac{1}{4}[x+\sin 2 x]_{x=\pi / 4}^{x=\pi / 3}+\frac{1}{8}[x+\sin 4 x \\
& A=\frac{1}{4}\left[\left(\pi / 3+\sin \frac{2 \pi}{3}\right)-\left(\frac{\pi}{4}+\sin \frac{\pi}{2}\right)\right]+\frac{1}{8}\left[\left(\frac{\pi}{3}+\frac{1}{4} \sin \frac{4 \pi}{3}\right)-\left(\frac{\pi}{4}+\frac{1}{4} \sin \pi\right)\right] \\
& A=\frac{1}{4}\left[\frac{4 \pi-3 \pi}{12}+\frac{\sqrt{3}}{2}-1\right]+\frac{1}{8}\left[\frac{4 \pi-3 \pi}{12}+\frac{1}{4}\left(-\frac{\sqrt{3}}{2}\right)-\frac{1}{4} \cdot 0\right] \\
& A=\frac{1}{4} \cdot \frac{\pi}{12}+\frac{\sqrt{3}}{8}-\frac{1}{4}+\frac{1}{8} \cdot \frac{\pi}{12}-\frac{\sqrt{3}}{64} \quad \pi=\frac{\pi}{96}+\frac{7 \sqrt{3}}{64}-\frac{1}{4} \\
& A=\frac{2 \pi}{96}+\frac{8 \sqrt{3}-\sqrt{3}}{\operatorname{c4}}-\frac{1}{4}-\frac{1}{192}(2 \pi+21 \sqrt{3}-24) \frac{11}{s q u n} 1+5
\end{aligned}
$$

$$
\begin{aligned}
& \sin m x \sin n x=\frac{1}{2}(\cos [(m-n) x]-\cos [(m+n) x]) \\
& \sin m x \cos n x=\frac{1}{2}(\sin [(m-n) x]+\sin [(m+n) x]) \\
& \cos m x \cos n x=\frac{1}{2}(\cos [(m-n) x]+\cos [(m+n) x])
\end{aligned}
$$

